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Abstract

We present an identity-based cryptosystem that features fully anonymous ciphertexts and
hierarchical key delegation. We give a proof of security in the standard model, based on the mild
Decision Linear complexity assumption in bilinear groups. The system is efficient and practical,
with small ciphertexts of size linear in the depth of the hierarchy. Applications include search
on encrypted data, fully private communication, etc.

Our results resolve two open problems pertaining to anonymous identity-based encryption,
our scheme being the first to offer provable anonymity in the standard model, in addition to
being the first to realize fully anonymous HIBE at all levels in the hierarchy.

1 Introduction

The cryptographic primitive of identity-based encryption allows a sender to encrypt a message for
a receiver using only the receiver’s identity as a public key. Recently, there has been interest in
“anonymous” identity-based encryption systems, where the ciphertext does not leak the identity
of the recipient. In addition to their obvious privacy benefits, anonymous IBE systems can be
leveraged to construct Public key Encryption with Keyword Search (PEKS) schemes, as was first
observed by Boneh et al. [10] and later formalized by Abdalla et al. [1]. Roughly speaking, PEKS
is a form of public key encryption that allows an encryptor to make a document serarchable by
keywords, and where the capabilities to search on particular keywords are delegated by a central
authority. Anonymous HIBE further enables sophisticated access policies for PEKS and ID-based
PEKS.

Prior to this paper, the only IBE system known to be inherently anonymous was that of Boneh
and Franklin [11]. Although they did not state it explicitly, the anonymity of their scheme followed
readily from their proof of semantic security. One drawback of the Boneh-Franklin IBE paradigm
is that its security proofs are set in the random oracle model. More recently, efficient IBE schemes
due to Boneh and Boyen [5] and Waters [29] have been proven secure outside of the random
oracle model, but these schemes are not anonymous when implemented using “symmetric” bilinear
pairings e : G×G→ GT , because one can test if a given ciphertext was encrypted for a candidate
identity. In retrospect, one notes that with minor modifications Boneh and Boyen’s two schemes
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“BB1” and “BB2”, and Waters’ by extension, may in fact become anonymous when implemented
with an “asymmetric” pairing e : G × Ĝ → GT under strong additional assumptions (such as
hardness of DDH in G), but this is not easy to prove. Furthermore, for a fundamental reason this
observation applies only to non-hierarchical IBE, and it would be nice not to rely on such “risky”
assumptions which are patently false in the symmetric setting.

At any rate, and even if one were to consider the use of random oracles, there simply does
not exist any known hierarchical identity-based encryption scheme which is also anonymous. (In
particular, the Gentry-Silverberg [19] HIBE scheme is not.) In their recent CRYPTO’05 paper,
Abdalla et al. [1] cite the creation of an anonymous IBE system without random oracles and an
anonymous HIBE system with or without random oracles as important open problems.

1.1 Our Results

We present an Anonymous IBE and HIBE scheme without random oracles, therby solving both
open problems from CRYPTO’05. Our scheme is very efficient for pure IBE, and reasonably efficient
for HIBE with shallow hierarchies of practical interest. We prove it secure based solely on Boneh’s
et al. [9] Decision Linear assumption, which is one of the mildest useful complexity assumptions in
bilinear groups.

At first sight, our construction bears a superficial resemblance to Boneh and Boyen’s “BB1”
HIBE scheme [5, §4] — but with at least two big differences. First, we perform “linear splittings”
on various portions of the ciphertext, to thwart the trial-and-error identity guessing to which other
schemes fell prey. This idea gives us provable anonymity, even under symmetric pairings. Second,
we use multiple parallel HIBE systems and constantly re-randomize the keys between them. This
is what lets us use the linear splitting trick at all levels of the hierarchy, but also poses a technical
challenge in the security reduction which mist now simulate multiple interacting HIBE systems
at once. Solving this problem was the crucial step that gave us a hierarchy without destroying
anonymity.

Building a “flat” anonymous IBE system turns out to be reasonably straightforward using our
linear splitting technique to hide the recipient identity behind some randomization. Complications
arise when one tries to support hierarchical key generation. In a nutshell, to prevent collusion
attacks in HIBE, “parents” must independently re-randomize the private keys they give to their
“children”. In all known HIBE schemes, re-randomization is enabled by a number of supplemental
components in the public system parameters. Why this breaks anonymity is because the same
mechanism that allows private keys to be publicly re-randomized, also allows ciphertexts to be
publicly tested for recipient identities. Random oracles offer no protection against this.

To circumvent this obstable, we need to make the re-randomization elements non-public, and tie
them to each individual private key. In practical terms, this means that private keys must convey
extra components (although not too many). The real difficulty is that each set of re-randomization
components constitutes a full-fledged HIBE in its own right, which must be simulated together with
its peers in the security proof (their number grows linearly with the maximal depth). Because these
systems are not independent but interact with each other, we are left with the task of simulating
multiple HIBE subsystems that are globally constrained by a set of linear relations. A novelty of
our proof technique is a method to endow the simulator with enough degrees of freedom to reduce
a system of unknown keys to a single instance of the presumed hard problem.

A notable feature of our construction is that it can be implemented using all known instantia-
tions of the bilinear pairing (whether symmetric or asymmetric, with our without a computable or
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invertible homomorphism, etc.). To cover all grounds, we describe both a symmetric IBE version
for simplicitly, and a fully general asymmetric HIBE without homomorphisms for generality.

1.2 Related Work

The concept of identity-based encryption was first proposed by Shamir [26] two decades ago. How-
ever, it was not until much later that Boneh and Franklin [11] and Cocks [17] presented the first
practical solutions. The Boneh-Franklin IBE scheme was based on groups with efficiently com-
putable bilinear maps, while the Cocks scheme was proven secure under the quadratic residuosity
problem, which relies on the hardness of factoring. The security of either scheme was only proven
in the random oracle model.

Canetti, Halevi, and Katz [14] suggested a weaker security notion for IBE, known as selective
identity or selective-ID, relative to which they were able to build an inefficient but secure IBE
scheme without using random oracles. Boneh and Boyen [5] presented two very efficient IBE
systems (“BB1” and “BB2”) with selective-ID security proofs, also without random oracles. The
same authors [6] then proposed a coding-theoretic extension to their “BB1” scheme that allowed
them to prove security for the full notion of adaptive identity or adaptive-ID security without
random oracles, but the construction was impractical. Waters [29] then proposed a much simpler
extension to “BB1” also with an adaptive-ID security proof without random oracles; its efficiency
was further improved in two recent independent papers, [16] and [24].

The notion of hierarchical identity-based encryption was first defined by Horwitz and Lynn [20],
and a construction in the random oracle model given by Gentry and Silverberg [19]. The first HIBE
scheme to be provably secure without random oracles is the “BB1” system of Boneh and Boyen;
subsequent improvements include the HIBE scheme by Boneh, Boyen, and Goh [7], which features
shorter ciphertexts and private keys. We note that the selective-ID vs. adaptive-ID distinction is
not very important for any of the HIBE systems known to date, since in all of them the adaptive-
ID security degrades exponentially with the depth of the hierarchy: the two models are equivalent
up to a constant factor inside the exponential. An important open problem in identity-based
cryptography is to devise an adaptive-ID secure HIBE scheme whose security degrades polynomially
with the depth of the hierarchy (under reasonable assumptions).

Song, Wagner, and Perrig [28] presented the first scheme for searching on encrypted data.
Their scheme is in the symmetric-key setting where the same party that encrypted the data would
generate the keyword search capabilities. Boneh et al. [10] introduced Public Key Encryption with
Keyword Search (PEKS), where any party with access to a public key could make an encrypted
document that was searchable by keyword; they realized their construction by applying the Boneh-
Franklin IBE scheme. Abdalla et al. [1] recently formalized the notion of Anonymous IBE and its
relationship to PEKS. Additionally, they formalized the notion of Anonymous HIBE and mentioned
different applications for it. Using the GS system as a starting point, they also gave an HIBE scheme
that was anonymous at the first level, in the random oracle model. Another view of Anonymous
IBE is as a combination of identity-based encryption with the property of key privacy, which was
introduced by Bellare et al. [4].

1.3 Applications

In this section we discuss various applications of our fully anonymous HIBE system. The main
applications can be split into several broad categories.
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Fully Private Communication. The first compelling application of anonymous IBE is for fully
private communication. Bellare et al. [4] argue that public key encryption systems that have the
“key privacy” property can be used for anonymous communication: for example, if one wishes to
hide the identity of a recipient one can encrypt a ciphertext with an anonymous IBE system and
post it on a public bulletin board. By the anonymity property, the ciphertext will betray neither
sender nor recipient identity, and since the bulletin board is public, this method will also be resistant
to traffic analysis. To compound this notion of key privacy, identity-based encryption is particularly
suited for untraceable anonymous communication, since, contrarily to public-key infrastructures,
the sender does not even need to query a directory for the public key of the recipient. For this
reason, anonymous IBE provides a very convincing solution to the problem of secure anonymous
communication, as it makes it harder to conduct traffic analysis attack on directory lookups.

Search on Encrypted Data. The second main application of anonymous (H)IBE is for en-
crypted search. As mentioned earlier, anonymous IBE and HIBE give several application in the
Public-key Encryption with Keyword Search (PEKS) domain, proposed by Boneh et al. [10], and
further discussed by Abdalla et al. [1]. As a simple example of real-world application of our scheme,
PEKS is a useful primitive for building secure audit logs [30, 18]. Furthermore, one can leverage
the hierarchical identities in our anonymous HIBE in several interesting ways. For example, we can
use a two-level anonymous HIBE scheme where the first level is an identity and the second level is
a keyword. This gives us the first implementation of the Identity-Based Encryption with Keyword
Search (IBEKS) primitive asked for in [1]. With this primitive, someone with the private key for
an identity can delegate out search capabilities for encryptions to their identity, without requiring
a central authority to act as the delegator. Conversely, by using certain keywords such as “Top
Secret” at the first level of the hierarchy, it is possible to broadcast innocent-looking ciphertexts
that require a certain clearance to decrypt, without even hinting at the fact that their payload
might be valuable. We can create more refined search capabilities with a deeper hierarchy.

As the last applications we mention, forward-secure public-key encryption [14] and forward-
secure HIBE [31] are straightforward to construct from HIBE systems [31, 7]. We can implement
Anonymous fs-HIBE with our scheme by embedding a time component within the hierarchy, while
preserving the anonymity property.

2 Background

Recall that a pairing is an efficiently computable [23], non-degenerate function, e : G × Ĝ → GT ,
with the bilinearity property that e(gr, ĝs) = e(g, ĝ)r s. Here, G, Ĝ, and GT are all multiplicative
groups of prime order p, respectively generated by g, ĝ, and e(g, ĝ). It is asymmetric if G 6= Ĝ.

We call bilinear instance a tuple G = [p, G, Ĝ, GT , g, ĝ, e]. We assume an efficient generation
procedure that on input a security parameter Σ ∈ N outputs G $←Gen(1Σ) where log2(p) = Θ(Σ).
We write Zp = Z/pZ for the set of residues modp and Z×

p = Zp \ {0} for its multiplicative group.

2.1 Assumptions

Since bilinear groups first appeared in cryptography half a decade ago [21], several years after their
first use in cryptanalysis [22], bilinear maps or pairings have been used in a large variety of ways
under many different complexity assumptions. Some of them are very strong; others are weaker.
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Informally, we say that an assumption is mild if it is tautological in the generic group model [27], and
also “efficiently falsifiable” [25] in the sense that its problem instances are stated non-interactively
and concisely (e.g., independently of the number of adversarial queries or such large quantity).
Most IBE and HIBE schemes mentioned in Introduction (except “BB2” and the Factoring-based
system by Cocks) are based on mild bilinear complexity assumptions, such as BDH [21, 11] and
Linear [9]. In this paper, our goal is to rely only on mild assumptions.

Decision BDH: The Bilinear DH assumption was first used by Joux [21], and gained popularity
for its role in the Boneh-Franklin IBE system [11]. The decisional assumption posits the
hardness of the D-BDH problem, which we state in asymmetric bilinear groups as:

Given a tuple [g, gz1 , gz3 , ĝ, ĝz1 , ĝz2 , Z] ∈ G3 × Ĝ3 × GT for random exponents
[z1, z2, z3] ∈ (Zp)

3, decide whether Z = e(g, ĝ)z1 z2 z3 .

Decision Linear: The Linear assumption was first proposed by Boneh, Boyen, and Shacham for
group signatures [9]. Its decisional form posits the hardness of the D-Linear problem, which
can be stated in asymmetric bilinear groups as follows:

Given a tuple [g, gz1 , gz2 , gz1 z3 , gz2 z4 , ĝ, ĝz1 , ĝz2 , Z] ∈ G5 × Ĝ3 × G for random
[z1, z2, z3, z4] ∈ (Zp)

4, decide whether Z = gz3+z4 .

“Hard” means algorithmically non-solvable with probability 1/2+Ω(poly(Σ)−1) in time O(poly(Σ))
for efficiently generated random “bilinear instances” [p, G, Ĝ, GT , g, ĝ, e] $←Gen(1Σ), as Σ→ +∞.

These assumptions allow but not require the groups G and Ĝ to be distinct, and similarly we
make no representation one way or the other regarding the existence of computable homomorphisms
between G and Ĝ, in either direction. This is the most general formulation. It has two main benefits:
(1) since it comes with fewer restrictions, it is potentially more robust and increases our confidence
in the assumptions we make; and (2) it gives us the flexibility to implement the bilinear pairing
on a broad variety of algebraic curves with attractive computational characteristics [2], whereas
symmetric pairings tend to be confined to supersingular curves, to name this one distinction.

Note that if we let G = Ĝ and g = ĝ, our assumptions regain their familiar “symmetric” forms:

Given [g, gz1 , gz2 , gz3 , Z] ∈ G4×GT for random [z1, z2, z3] ∈ (Zp)
3, decide whether Z = e(g, g)z1 z2 z3 .

Given [g, gz1 , gz2 , gz1 z3 , gz2 z4 , Z] ∈ G5 ×G for random [z1, z2, z3, z4] ∈ (Zp)
4, decide if Z = gz3+z4 .

As a rule of thumb, the remainder of this paper may be read in the context of symmetric pairings,
simply by dropping all “hats” (ˆ) in the notation. Also note that D-Linear trivially implies D-BDH.

2.2 Models

We briefly precise the security notions that are implied by the concept of Anonymous IBE or HIBE.
We omit the formal definitions, which may be found in the literature [11, 1].

Confidentiality: This is the usual security notion of semantic security for encryption. It means
that no non-trivial information about the message can be feasibly gleaned from the ciphertext.

Anonymity: Recipient anonymity is the property that the adversary be unable to distinguish the
encryption of a chosen message for a first chosen identity from the encryption of the same
message for a second chosen identity. Equivalently, the adversary must be unable to decide
whether a ciphertext was encrypted for a chosen identity, or for a random identity.
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3 Intuition

Before we present our scheme we first explain why it is difficult to implement anonymous IBE
without random oracles, as well as any form of anonymous HIBE even in the random oracle model.
We also give some intuition behind our solution.

Recall that in the basic Boneh-Franklin IBE system [11], an encryption of a message Msg to
some identity Id, takes the following form,

CT = [ C1, C2 ] = [ gr, e(H(Id), Q)r Msg ] ∈ G×GT ,

where H is a random oracle, r is a random exponent, and g and Q are public system parameters.
A crucial observation is that the one element of the ciphertext in the bilinear group G, namely, g r,
is just a random element that gives no information about the identity of the recipient. The reason
why only one element in G is needed is because private keys in the Boneh-Franklin scheme are
deterministic — there will be no randomness in the private key to cancel out. Since the proof of
semantic security is based on the fact that C2 is indistinguishable from random without the private
key for ID, it follows that the scheme is also anonymous since C2 is the only part of the ciphertext
on which the recipient identity has any bearing.

More recently, there have been a number of IBE schemes proven secure without random oracles,
such as BTE from [14], BB1 and BB2 from [5], and Waters’ [29]. However, in all these schemes the
proof of security requires that randomness be injected into the private key generation. Since the
private keys are randomized, some extra information is needed in the ciphertext in order to cancel
out the randomness upon decryption. To illustrate, consider the encryption of a message Msg to
an identity Id in the BB1 Boneh-Boyen system,

CT = [ C1, C2, C3 ] =
[

gr, (gId

1 g3)
r, e(g1, ĝ2)

r Msg
]

∈ G2 ×GT ,

where r is chosen by the encryptor and g, g1, g3, and e(g1, ĝ2) are public system parameters. Notice,
there are now two elements in G, and between them there is enough redundancy to determine
whether a ciphertext was intended for a given identity Id, simply by testing whether the tuple
[g, gId

1 g3, C1, C2] is Diffie-Hellman, using the bilinear map,

e(C1, ĝ
Id

1 ĝ3)
?
= e(C2, ĝ) .

We see that the extra ciphertext components which are seemingly necessary in IBE schemes without
random oracles, in fact contribute to leaking the identity of the intended recipient of a ciphertext.

A similar argument can be made for why existing HIBE schemes are not anonymous, regardless
of their lack of use of random oracles. Indeed, all known HIBE schemes, including the Gentry-
Silverberg system in the random oracle model, rely on randomization in order to properly delegate
private keys down the hierarchy in a collusion-resistant manner. Because of this, we similarly have
the property that the extra components needed to cancel the randomization will also provide a test
for the addressee’s identity.

Since having randomized keys seems to be fundamental to designing (H)IBE systems without
random oracles, we aim to design a system where the necessary extra information will be hidden to
a computationally bounded adversary. Thus, even though we cannot prevent the ciphertext from
containing information about the recipient, we can design our system such that this information
cannot be easily tested from the public parameters and ciphertext alone.
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4 A Primer : Anonymous IBE

We start by describing an Anonymous IBE scheme that is semantically secure against selective-ID
chosen plaintext attacks. This construction will illustrate our basic technique of “splitting” the
bilinear group elements into two pieces to protect against the attacks described in the previous
section. In the next section we will describe our full Anonymous HIBE scheme, as well as mention
how to achieve adaptive-ID and chosen ciphertext security.

For simplicity, and also to show that we get anonymity even when using symmetric pairings,
we describe the IBE system (and the IBE system only) in the special case where G = Ĝ:

Setup The setup algorithm chooses a random generator g ∈ G, random group elements g0, g1 ∈ G,
and random exponents ω, t1, t2, t3, t4 ∈ Zp. It keeps these exponents as the master key, Msk.
The corresponding system parameters are published as:

Pub←
[

Ω = e(g, g)t1t2ω, g, g0, g1, v1 = gt1 , v2 = gt2 , v3 = gt3 , v4 = gt4
]

.

Extract(Msk, Id) To issue a private key for identity Id, the key extraction authority chooses two
random exponents r1, r2 ∈ Zp, and computes the private key, PvkId = [d0, d1, d2, d3, d4], as:

PvkId ←
[

gr1t1t2+r2t3t4 , g−ωt2(g0g
Id

1 )−r1t2 , g−ωt1(g0g
Id

1 )−r1t1 , (g0g
Id

1 )−r2t4 , (g0g
Id

1 )−r2t3
]

.

Encrypt(Pub, Id,M) Encrypting a message Msg ∈ GT for an identity Id ∈ Z×
p works as follows.

The algorithm chooses random exponents s, s1, s2 ∈ Zp, and creates the ciphertext as:

CT = [ C ′, C0, C1, C2, C3, C4 ]←
[

ΩsM, (g0g
Id

1 )s, vs−s1

1 , vs1

2 , vs−s2

3 , vs2

4

]

.

Decrypt(PvkId, C) The decryption algorithm attempts to decrypt a ciphertext CT by computing:

C ′ e(C0, d0) e(C1, d1) e(C2, d2) e(C3, d3) e(C4, d4) = Msg .

Proving Security. We prove security using a hybrid experiment. Let [C ′, C0, C1, C2, C3, C4]
denote the challenge ciphertext given to the adversary during a real attack. Additionally, let R
be a random element of GT , and R′, R′′ be random elements of G. We define the following hybrid
games which differ on what challenge ciphertext is given by the simulator to the adversary:

Γ0 : The challenge ciphertext is CT0 = [C ′, C0, C1, C2, C3, C4].

Γ1 : The challenge ciphertext is CT1 = [R,C0, C1, C2, C3, C4].

Γ2 : The challenge ciphertext is CT2 = [R,C0, R
′, C2, C3, C4].

Γ3 : The challenge ciphertext is CT3 = [R,C0, R
′, C2, R

′′, C4].

We remark that the challenge ciphertext in Γ3 leaks no information about the identity since it is
composed of six random group elements, whereas in Γ0 the challenge is well formed. We show that
the transitions from Γ0 to Γ1 to Γ2 to Γ3 are all computationally indistinguishable.

Lemma 1 (semantic security). Under the (t, ε)-Decision BDH assumption, there is no adversary

running in time t that distinguishes between the games Γ0 and Γ1 with advantage greater than ε.
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Proof. The proof from this lemma essentially follows from the security of the Boneh-Boyen selective-
ID scheme. Suppose there is an adversary that can distingiush between game Γ0 and Γ1 with
advantage ε. Then we build a simulator that plays the Decison BDH game with advantage ε.

The simulator receives a D-BDH challenge [g, gz1 , gz2 , gz3 , Z] where Z is either e(g, g)z1z2z3 or a
random element of GT with equal probability. The game proceeds as follows:

� Init: The adversary announces the identity Id∗ it wants to be challenged upon.

� Setup: The simulator chooses random exponents t1, t2, t3, t4, y ∈ Zp. It retains the generator g,
and sets g0 = (gz1)−Idgy and g1 = gz1 . The public parameters are published as:

Pub←
[

Ω = e(gz1 , gz2)t1t2 , g, g0, g1, v1 = gt1 , v2 = gt2 , v3 = gt3 , v4 = gt4
]

.

Note that this implies that ω = z1z2.

� Phase 1: Suppose the adversary requests a key for identity Id 6= Id∗. The simulator picks random
exponents r1, r2 ∈ Zp, and issues a private key as: PvkId = [d0, d1, d2, d3, d4]←

[

(gz2)
−1

Id−Id∗ gr1gr2t3t4 , ((gz2)
y

Id−Id∗ (g0g
Id

1 )r1)−t2 , ((gz2)
y

Id−Id∗ (g0g
Id

1 )r1)−t1 , (g0g
Id

1 )−r2t4 , (g0g
Id

1 )−r2t3
]

.

This is a well formed secret key for random exponents r̃1 = r1 − z2/(Id − Id∗) and r̃2 = r2.

� Challenge: Upon receiving a message Msg from the adversary, the simulator chooses s1, s2 ∈ Zp,
and outputs the challenge ciphertext as:

CT = [ C ′, C0, C1, C2, C3, C4 ]←
[

Z−t1t2 M, (gz3)y, (gz3)t1gs1t1 , gs1t2 , (gz3)t3gs2t3 , gs2t4
]

.

We can let s = z3 and see that if Z = e(g, g)z1z2z3 the simulator is playing game Γ0 with the
adversary, otherwise the simulator is playing game Γ1 with the adversary.

� Phase 2: The simulator answers the queries in the same way as Phase 1.

� Guess: The simulator outputs a guess γ, which the simulator forwards as its own guess for the
D-BDH game.

Since the simulator plays game Γ0 if and only the given D-BDH instance was well formed, the
simulator’s advantage in the D-BDH game is exactly ε.

Lemma 2 (anonymity, part 1). Under the (t, ε)-Decision linear assumption, no adversary that

runs in time t can distinguish between the games Γ1 and Γ2 with advantage greater than ε.

Proof. Suppose the existence of an adversary A that distinguishes between the two games with
advantage ε. Then we construct a simulator that wins the Decision Linear game as follows.

The simulator takes in a D-Linear instance [g, gz1 , gz2 , gz1z3 , gz2z4 , Z], where Z is either gz3+z4

or random in G with equal probability. For convenience, we rewrite this as [g, gz1 , gz2 , gz1z3 , Y, gs]
for s such that gs = Z, and consider the task of deciding whether Y = gz2(s−z3) which is equivalent.
The simulator plays the game in the following stages.

� Init: The adversary A gives the simulator the challenge identity Id∗.

� Setup: The simulator first chooses random exponents α, y, t3, t4, ω. It lets g in the simulation be
as in the instance, and sets v1 = gz2 and v2 = gz1 . The public key is published as: Pub←
[

Ω = e(g, gz2 )ω, g, g0 = (gz2)−Id
∗αgy, g1 = (gz2)α, v1 = (gz2), v2 = (gz1), v3 = gt3 , v4 = gt4

]

.
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If we pose t1 = z1 and t2 = z2, we note that the public key is distributed as in the real scheme.

� Phase 1: To answer a private key extraction query for an identity Id 6= Id∗, the simulator chooses
random exponents r1, r2 ∈ Zp, and outputs a key given by: PvkId = [d0, d1, d2, d3, d4]←
[

(gz1)r1gr2t3t4 , (gz1)−ω−α(Id−Id
∗)r1 , (gz2)−ω−α(Id−Id

∗)r1 , (gz1)
−r1y

t3 (g0g
Id

1 )−r2t4 , (gz1)
−r1y

t4 (g0g
Id

1 )−r2t3

]

.

If, instead of r1 and r2, we consider this pair of uniform random exponents,

r̃1 =
r1α(Id− Id∗)

α(Id− Id∗)z2 + y
, r̃2 = r2 +

yz1r1

(t3t4)(α(Id − Id∗)z2 + y)
,

then we see that the private key is well formed, since it can be rewritten as:

PvkId =
[

gr̃1t1t2+r̃2t3t4 , g−ωt2(g0g
Id

1 )−r̃1t2 , g−ωt1(g0g
Id

1 )−r̃1t1 , (g0g
Id

1 )−r̃2t4 , (g0g
Id

1 )−r̃2t3
]

.

� Challenge: The simulator gets from the adversary a message M which it can discard, and responds
with a challenge ciphertext for the identity Id∗. Pose s1 = z3. To proceed, the simulator picks a
random exponent s2 ∈ Zp and a random element R ∈ GT , and outputs the ciphertext as:

CT = [ C ′, C0, C1, C2, C3, C4 ]←
[

R, (gs)y, Y, (gz1z3), (gs)t3g−s2t3 , gs2t4
]

.

If Y = gz2(s−z3), i.e., gs = Z = gz3+z4 , then C1 = vs−s1

1 and C2 = vs1

2 ; all parts of the challenge but
C ′ are thus well formed, and the simulator behaved as in game Γ1. If instead Y is independent of
z1, z2, s, s1, s2, which happens when Z is random, then the simulator responded as in game Γ2.

� Phase 2: The simulator answer the query in the same way as Phase 1.

� Output: The adversary outputs a bit γ to guess which hybrid game the simulator has been
playing. To conclude, the simulator forwards γ as its own answer in the Decision-Linear game.

By the simulation setup the advantage of the simulator will be exactly that of the adversary.

Lemma 3 (anonymity, part 2). Under the (t, ε)-Decision linear assumption, no adversary that

runs in time t can distinguish between the games Γ2 and Γ3 with advantage greater than ε.

Proof. This argument follows almost identically to that of Lemma 2, except where the simulation
is done over the parameters v3 and v4 in place of v1 and v2. The other difference is that the gω term
that appeared in d1, d2 without interfering with the simulation, does not even appear in d3, d4.

5 The Scheme : Anonymous HIBE

We now describe our full Anonymous HIBE scheme without random oracles. Anonymity is provided
by the splitting technique and hybrid proof introduced in the previous section. In addition, to
thwart the multiple avenues for user collusion enabled by the hierarchy, the keys are re-randomized
between all siblings and all children. Roughly speaking, this is done by using several parallel HIBE
systems, which are recombined at random every time a new private key is issued. In the proof of
security, this extra complication is handled by a “multi-secret simulator”, that is able to simulate
multiple interacting HIBE systems under a set of constraints. This is an information theoretic
proof that sits on top of the hybrid argument, which is computational.

For the most part, we focus on security against selective-identity, chosen plaintext attacks. In
Appendix A we mention how to secure the scheme against adaptive-ID and CCA2 adversaries.

9
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Setup(1Σ, D) To generate the public system parameters and the corresponding master secret key,
given a security parameter Σ ∈ N in unary, and the hierarchy’s maximum depth D ∈ N, the
setup algorithm first generates a bilinear instance G = [p, G, Ĝ, GT , g, ĝ, e] $←Gen(1Σ). Then:

1. Select 7 + 5D + D2 random integers modulo p (some of them forcibly non-zero):

ω, [ αn, βn, [ θn,` ]`=0,...,D ]n=0,...,1+D ∈$ Z×
p × ((Z×

p )2 × (Zp)
1+D)2+D ;

2. Publish G and the system parameters Pub ∈ GT ×G2 (1+D) (2+D) given by:

Ω, [ [ an,`, bn,` ]`=0,...,D ]n=0,...,1+D ← e(g, ĝ)ω,
[

[ gαn θn,` , gβn θn,` ]`=0,...,D

]

n=0,...,1+D

3. Retain the master secret key Msk ∈ Ĝ1+(3+D) (2+D) comprising the elements:

ŵ, [ ân, b̂n, [ ŷn,` ]`=0,...,D ]n=0,...,1+D ← ĝω,

[

ĝαn , ĝβn ,

[ ĝαn βn θn,` ]`=0,...,D

]

n=0,...,1+D

.

Extract(Pub,Msk, Id) To extract a private key for an identity Id = [I0, I1, . . . , IL] ∈ (Z×
p )1+L

where L ∈ {1, . . . , D} and by convention I0 = 1, using the master key Msk:

1. Pick 6 + 5D + D2 random integers: [ρn, [ρn,m]m=0,...,1+D]n=0,...,1+D ∈$ (Zp)
(3+D) (2+D).

2. Compute the key’s decryption portion: Pvk
decrypt
Id

= k0, [kn,(a), kn,(b)]n=0,...,1+D ←

ŵ

1+D∏

n=0

L∏

`=0

(ŷI`

n,`)
ρn ,

[

â−ρn
n , b̂−ρn

n

]

n=0,...,1+D
∈ Ĝ5+2 D .

3. The re-randomization part: Pvkrerand
Id

= [fm,0, [fm,n,(a), fm,n,(b)]n=0,...,1+D]m=0,...,1+D ←

[
1+D∏

n=0

L∏

`=0

(ŷI`

n,`)
ρn,m ,

[

â
−ρn,m
n , b̂

−ρn,m
n

]

n=0,...,1+D

]

m=0,...,1+D

∈ Ĝ(5+2 D) (2+D) .

4. And then the delegation components: Pvk
deleg
Id

= [h`, [hm,`]m=0,...,1+D]`=1+L,...,D ←




1+D∏

n=0

(ŷn,`)
ρn ,

[
1+D∏

n=0

(ŷn,`)
ρn,m

]

m=0,...,1+D





`=1+L,...,D

∈ Ĝ(3+D) (D−L) .

The full private key is issued as the concatenation: PvkId = Pvk
decrypt
Id

‖ Pvkrerand
Id ‖ Pvk

deleg
Id

.

A more intuitive way to visualize the private key is as a rectangular array in Ĝ(3+D)×(5+3 D−L) with
Pvk

decrypt
Id

in the upper left corner, Pvkrerand
Id in the lower left, and Pvk

deleg
Id

on the right side:
[

k0 k1,(a) k1,(b) . . . k1+D,(a) k1+D,(b)

]








f0,0 f0,1,(a) f0,1,(a) . . . f0,1+D,(a) f0,1+D,(a)

f1,0 f1,1,(a) f1,1,(a) . . . f1,1+D,(a) f1,1+D,(a)
...

. . .

f1+D,0 f1+D,1,(a) f1+D,1,(a) . . . f1+D,1+D,(a) f1+D,1+D,(a)


















h1+L h2+L . . . hD

h0,1+L h0,2+L . . . h0,D

h1,1+L h1,2+L . . . h1,D

. . .

h1+D,1+L h1+D,2+L . . . h1+D,D
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Each row on the left can be viewed as a private key in an independent HIBE system (with generalized

linear splitting as in Section 4). The main difference is that only Pvk
decrypt
Id

contains the secret ŵ.
The rows of Pvkrerand

Id are independent HIBE keys for the same Id that do not permit decryption.

The elements on the right side provide the delegation functionality: each column in Pvk
deleg
Id

extends
the hierarchy down one level. Delegation works as follows:

Derive(Pub,PvkId|L−1, IdL) This algorithm derives a private key for Id = [I0, I1, . . . , IL] ∈ (Z×
p )1+L

where L ∈ {2, . . . , D} and I0 = 1, given a private key of the parent. Let that be PvkId|L−1 =
[k0, [kn,(a), kn,(b)], [fm,0, [fm,n,(a), fm,n,(b)]], [h`, [hm,`]]`=L,...,D] for n,m ∈ {0, . . . , 1 + D}.

1. Pick 6+5D+D2 random integers: [πm, [πm,m′ ]m′=0,...,1+D]m=0,...,1+D ∈$ (Zp)
(3+D) (2+D).

2. Compute for the decryption portion: Pvk
decrypt
Id

= k′
0, [k

′
n,(a), k

′
n,(b)]n=0,...,1+D ←

(k0

1+D∏

m=0

(fm,0)
πm) (h`

1+D∏

m=0

(hm,`)
πm)IL ,

[

kn,(a)

1+D∏

m=0

(fm,n,(a))
πm , kn,(b)

1+D∏

m=0

(fm,n,(b))
πm

]

n=0,...,1+D

.

3. For re-randomization: Pvkrerand
Id

= [f ′
m′,0, [f

′
m′,n,(a), f

′
m′,n,(b)]n=0,...,1+D]m′=0,...,1+D ←



 (
1+D∏

m=0

(fm,0)
πm,m′ ) (

1+D∏

m=0

(hm,`)
πm,m′ )IL ,

[
1+D∏

m=0

(fm,n,(a))
πm,m′ ,

1+D∏

m=0

(fm,n,(b))
πm,m′

]

n=0,...,1+D





m′=0,...,1+D

.

4. And then for delegation: Pvk
deleg
Id

= [h′
`, [h

′
m′ ,`]m′=0,...,1+D]`=1+L,...,D ←



 h`

1+D∏

m=0

(hm,`)
πm ,

[
1+D∏

m=0

(hm,`)
πm,m′

]

m′=0,...,1+D





`=1+L,...,D

.

The subordinate private key is the concatenation: PvkId = Pvk
decrypt
Id

‖ Pvkrerand
Id

‖ Pvk
deleg
Id

.

Derive and Extract create private keys with the same structure and distribution. The derivation
process in Derive merges two distinct operations: delegation and re-randomization.
– Re-randomization occurs first, conceptually speaking. Very simply, we take a random linear
combination of all the rows of the big array on page 10. The first row is treated a bit differently:
it does not intervene into any other row’s re-randomization, and its own coefficient is set to 1.
– Delegation targets the leftmost elements of Pvk

decrypt
Id

and Pvkrerand
Id

, where identities appear.

Imagine Pvk
decrypt
Id

, Pvkrerand
Id

, and Pvk
deleg
Id

after re-randomization. Delegation to sub-identity IL

“consumes” the first column of Pvk
deleg
Id

: each element is raised to the power of IL, and the result

is aggregated into its target, the leftmost element of Pvk
decrypt
Id

or Pvkrerand
Id on the same row:

[
k0 . . . kn,(a) kn,(b) . . .

]









f0,0 . . . f0,n,(a) f0,n,(b) . . .
...

. . .

fm,0 . . . fm,n,(a) fm,n,(b) . . .
...

. . .




















hL h1+L . . . hD

h0,L h0,1+L . . . h0,D
...

. . .

hm,L hm,1+L . . . hm,D
...

. . .












→

[
k′
0 . . .

]









f ′
0,0 . . .
...

. . .

f ′
m,0 . . .
...




















• h′
1+L

. . . h′
D

• h′
0,1+L

. . . h′
0,D

. . .

• h′
m,1+L . . . h′

m,D
. . .












We now turn to the encryption and decryption methods.

11



www.manaraa.com

Encrypt(Pub, Id,Msg) To encrypt a message encoded as a group element Msg ∈ GT for a given
identity Id = [I0(= 1), I1, . . . , IL] at level L, the encryption algorithm proceeds as follows:

1. Select 3 + D random integers: r, [rn]n=0,...,1+D ∈$ (Zp)
3+D.

2. Output the ciphertext: CT = E, c0, [cn,(a), cn,(b)]n=0,...,1+D ←

Msg · Ω−r, gr,





(
L∏

`=0

bI`

n,`

)rn

,

(
L∏

`=0

aI`

n,`

)r−rn




n=0,...,1+D

∈ GT ×G5+2 D .

Encryption is very cheap with a bit of caching since the exponentiations bases never change.

Decrypt(Pub,PvkId,CT) To decrypt a ciphertext CT, using (the decryption portion of) a private

key Pvk
decrypt
Id

= [k0, [kn,(a), kn,(b)]n=0,...,1+D] , the decryption algorithm outputs:

M̂sg← E · e(c0, k0)
1+D∏

n=0

e(cn,(a), kn,(a)) e(cn,(b), kn,(b)) ∈ GT .

All the pairings in the product can be computed at once using the “multi-pairing” trick which
is similar to multi-exponentiation. One can also exploit the fact that all the k ··· are fixed for
a given recipient to perform advantageous pre-computations [3].

The following theorems show that extracted and delegated private keys are identically distributed,
and that extraction, encryption, and decryption, are consistent. Proofs are given in Appendix B.

Theorem 4. Private keys calculated by Derive and Extract have the same distribution.

Theorem 5. The Anonymous HIBE scheme is internally consistent.

6 Security

We state the security theorems for the A-HIBE scheme. The reductions are essentially tight and
hold in the standard model. Informal arguments and full proofs may be found in Appendix C.

First, we show semantic security against a selective-identity, chosen plaintext adversary.

Theorem 6 (Confidentiality). Suppose that G upholds the (τ, ε)-Decision BDH assumption.

Then, against a selective-ID adversary that makes at most q private key extraction queries, the

HIBE scheme of Section 5 is (q, τ̃ , ε̃)-IND-sID-CPA secure in G with τ̃ ≈ τ and ε̃ = ε−(3 + D) q/p.

The next theorem shows that the scheme is recipient anonymous under a selective identity,
chosen plaintext attack. (Sender anonymity is a trivial property of unauthenticated encryption.)

Theorem 7 (Anonymity). Suppose that G upholds the (τ, ε)-Decision Linear assumption. Then,

against a selective-ID adversary that makes q private key extraction queries, the HIBE scheme of

Section 5 is (q, τ̃ , ε̃)-ANON-sID-CPA secure in G with τ̃ ≈ τ and ε̃ = ε− (2 + D) (7 + 3D) q/p.

Active Attacks. We mention how to secure the scheme against active adversaries — in the
adaptive identity (ID) and the adaptive chosen ciphertext (CCA2) attack models — in Appendix A.

12
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7 Conclusion

We presented a provably anonymous IBE and HIBE scheme without random oracles, which resolves
an open question from CRYPTO 2005 regarding the existence of anonymous HIBE systems.

Our constructions make use of a novel “linear-splitting” technique which prevents an attacker
from testing the intended recipient of ciphertexts yet allows for the use of randomized private IBE
keys. In the hierarchical case, we add to this a new “multi-simulation” proof device that permits
multiple HIBE subsystems to concurrently re-randomize each other. Security is based solely on the
Linear assumption in bilinear groups.

Our basic scheme is very efficient, within a factor two of (non-anonymous) Boneh-Boyen, and
much faster than Boneh-Franklin encryption. The full hierarchical scheme remains practical with
its quadratic private key size, and its linear ciphertext size, encryption time, and decryption time,
as functions of the depth of the hierarchy.
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A Extensions

In this section, we describe a number of interesting extensions that can boost the security and
usefulness of our Anonymous HIBE scheme.

Adaptive-ID Security. It is not difficult to modify the algorithms given in Section 5 to achieve
provable security against adaptive-identity attacks in the standard model. The generalization is
similar to that proposed by Waters and others [29, 24, 16] for the Boneh-Boyen BB1 scheme [5].

In the selective-ID scheme, each identity component I` was a single integer in Z×
p (that could

result from hashing an identity string using a collision resistant hash function). In the adaptive-ID
scheme, we express this identity component as a vector of sub-components which are small integers.
In other words, each I` ∈ Z×

p becomes a vector ~I` = [I`,1, . . . , I`,d] ∈ {1, . . . , R}
d for some small

fixed R and d. Essentially, what we have done is to represent the integers I` as vectors of d digits
in radix R. The reasons why this is useful have to do with providing a sparse set of adversarially
unpredictable collisions, for the adaptive-ID proof of security, and are discussed in [29, 24, 16].

CCA2 Security. In an HIBE system, whether selective-ID or adaptive-ID, it is very easy to
leverage basic CPA security into CCA2 security in a generic manner for the two security goals we
care about, IND and ANON. The approach is due to Canetti, Halevi, and Katz [15], and involves
adding one level to the HIBE identity hierarchy; the extra identity component at the bottom is
then used to protect the rest of the ciphertext against tampering. This can be done either via
a signature scheme as originally suggested in [15], a combination of message authentication code
and commitment as proposed in [12], or a mere collision-resistant hash function as in [13]. Among
these, the CHK method is the most general and versatile, while the BK and BMW approaches are
a bit more efficient, and especially the latter for key encapsulation (it is however not generic, but
is compatible with our construction).

In all case we end up adding one level to the hierarchy. Fortunately, the added level need
not be anonymous, since the “identity” it corresponds to is a function of the ciphertext itself and
is independent of sender and recipient; it is also already public. Thus, the extra level can be
implemented using a cheaper method, e.g., using one layer of the BB1 HIBE scheme which will
mesh nicely into our A-HIBE construction.
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Threshold. It is a known result [8] that non-interactive CCA2 threshold systems are easy to
construct from identity-based encryption. In a similar vein, it is easy to extend our basic anonymous
HIBE to support non-interactive threshold key generation and/or decryption. We refer to [8] for
the specifics of the transformation.

Compression. Lastly, we mention a simple optimization of our scheme that gives slightly shorter
private keys and ciphertexts. Recall that Id = [I0, . . . , IL] where I0 = 1, so clearly there is no
anonymity requirement on I0. The ramifications of this observation are that it is possible to let
the indices n and m range not from 0 but from 1 to 1 + D in the private keys and the ciphertexts.
The identity component I0 = 1 is still present; however, we no longer make any effort to hide it.
As a result, the Anonynous IBE ciphertext overhead is reduced from 7 down to 5 elements of G;
for Anonymous HIBE of depth D, the overhead is brought down to 3 + 2D elements of G.

B Consistency Proofs

We now prove the consistency properties of the Anonymous HIBE scheme stated in Section 5.
To prove Theorem 5, we need to show that, with respect to the public parameter and the

reference key extraction definitions, the mechanisms for key extraction, delegation, encryption, and
decryption, are all consistent. It is useful to start with the proof of Theorem 4, i.e., establish that
the keys obtained by delegation are “the same” as those created directly from the master secret.

Proof of Theorem 4. We need to show that, for any given Id, private keys produced by Derive are
distributed identically as those created by Extract.

We focus on the decryption, re-randomization, and delegation portions of the private key, one
set at a time. The notation is the same as in the scheme description. To show that the decryption
portion is correctly distributed, ∀n ∈ {0, . . . , 1 + D}, it suffices to pose,

ρ′n = ρn +
1+D∑

m=0

ρn,m πm .

which allows us to rewrite the relevant components as in the reference algorithm,

k′
0 = ŵ

1+D∏

n=0

(

L∏

`=0

(ŷn,`)
I`)ρ

′
n , [ k′

n,(a), k′
n,(b) ] =

[

â−ρ′n
n , b̂−ρ′n

n

]

.

Similarly, it can be seen that the remainder of the subordinate private key is correctly distributed,
as, ∀m′ ∈ {0, . . . , 1 + D},∀n ∈ {0, . . . , 1 + D}, the substitutions,

ρ′n,m′ =

1+D∑

m=0

ρn,m πm,m′ .

let us rewrite the re-randomization components in canonical form,

f ′
m′,0 =

1+D∏

n=0

(
L∏

`=0

(ŷn,`)
I`)

ρ′
n,m′ , [ f ′

m′,n,(a), f ′
m′,n,(b) ] =

[

â
−ρ′

n,m′

n , b̂
−ρ′

n,m′

n

]

,
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as well as the delegation components, ∀` ∈ {1 + L, . . . ,D},

h′
` =

1+D∏

n=0

(ŷn,`)
ρ′n , h′

m′,` =

1+D∏

n=0

(ŷn,`)
ρ′

n,m′ .

It follows that private keys produced by Extract and Derive have the same distribution and can be
used indifferently.

Proof of Theorem 5. To establish the theorem, it suffices to prove that, with respect to the public
parameter and the reference key extraction definitions, the mechanisms for key extraction, delega-
tion, encryption, and decryption, are all correct.

Since we have already shown in Theorem 4 that the private keys generated by Extract and
Derive have the same distribution (for a given identity), we only need to consider one type of key.
The key specification from Extract is the obvious choice.

We show that the Decrypt algorithm will successfully decrypt any ciphertext created by the
Encrypt algorithm for a matching identity. Indeed,

Msg · Ω−r ·
e(gr, ŵ

∏1+D
n=0

∏L
`=0 (ŷn,`)

I` ρn)
∏1+D

n=0 e((
∏L

`=0 bI`

n,`)
rn , âρn

n ) e((
∏L

`=0 aI`

n,`)
r−rn , b̂ρn

n )
= Msg · Ω−r · e(gr, ŵ) = Msg .

In summary, our Anonymous HIBE scheme is consistent, and furthermore Extract and Derive

induce the same distribution over the private keys, as required.

C Security Proofs

We now turn to the formal proofs of the security theorems stated in Section 6.

C.1 Confidentiality

We prove confidentiality (i.e., semantic security) using a reduction from D-BDH. The proof is not
unlike that of other HIBE systems (it vaguely resembles Boneh and Boyen’s BB1 scheme), in that
we build a simulator that, lacking the component ŵ of the master key Msk, is nonetheless able
to simulate all private keys except for the challenge identity selected by the adversary (and that
identity’s ancestors).

There is a novel difficulty, however. Recall from the description of the scheme that a private
key consists not only of decryption components k· but also of re-randomization components f· that
are essentially the same as the k· with different randomization exponents. So far so good. The
problem is that the private key also contains a number of delegation components h ·, each of which
is required to be “compatible” with the k· or f· on the same row (i.e., use the same randomization).
As a result, the simulator must simulate not one but many unknown randomization exponents at
once, in order to ensure the simultaneous compatibility of all the h·.

We solve this problem by introducing extra degrees of freedom in the simulation, in order to
“decouple” the various unknowns, and show that there exists an assignment to the extra coefficients
that will satisfy the original constraints. This is one of the reason why we need a large enough
number of re-randomization rows f·, in order to give us enough degrees of freedom to feed the h·.

The formal proof follows.
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Proof of Theorem 6. We prove the theorem using the usual indistinguishability game.
To show semantic security from the Decision BDH assumption, suppose a D-BDH problem

instance is given as a tuple [g, gz1 , gz3 , ĝ, ĝz1 , ĝz2 , Z] ∈ G3× Ĝ3×GT for random [z1, z2, z3] ∈ (Zp)
3,

such that the test element Z ∈ GT is equal either to e(g, ĝ)z1 z2 z3 or to e(g, ĝ)z4 for random z4 ∈ Zp.
For clarity, we rewrite the D-BDH instance supplied to our reduction algorithm, B, as,

[g, g1, g3, ĝ, ĝ1, ĝ2, Z] ∈ G3 × Ĝ3 ×GT .

The reduction proceeds as follows.

� Open :

The adversary A opens the game by announcing the identity Id∗ = [I∗0 , I∗1 , . . . , I∗L∗ ] it wishes to
attack, and where A is allowed to choose the number of hierarchical components, L∗ ∈ {1, . . . , D}.
The zero-th component is fixed to I∗

0 = 1.

� Setup :

To create public parameters, the simulator B first draws a tuple of random non-zero integers
[αn, βn]n=0,...,1+D ∈$ (Z×

p )2 (2+D), as well as, for each n = 0, . . . , 1 + D, a vector of pairs of random

integers [θn,`, θ̄n,`]`=0,...,D ∈$ (Zp)
2 (1+D), each subject to the constraint that

∑L∗

`=0 θ̄n,` I∗` = 0
(mod p). Next, the simulator assigns,

[

Ω,

[ [ an,`, bn,` ]`=0,...,D ]n=0,...,1+D

]

←






e(g1, ĝ2) (= e(g, ĝ)z1 z2),
[ [

(gθn,` g
θ̄n,`

1 )αn , (gθn,` g
θ̄n,`

1 )βn

]

`=0,...,D

]

n=0,...,1+D




 .

The adversary is provided with the public system parameters, Pub, which comprise G and the
elements Ω and [[an,`, bn,`]`=0,...,D]n=0,...,1+D ; their distribution is the same as in the real scheme.

To complete the setup, the simulator computes what it can of the private key. Notice that
the public parameter simulation pegs the exponent ω from the real scheme to the product of the
exponents z1 and z2, which are implicitly defined by the Decision Linear instance but unknown
to the simulator. B thus partially computes the master key, Msk, as, (omitting the crossed-out
element)

[

��̂w,

[ ân, b̂n, [ ŷn,` ]`=0,...,D ]n=0,...,1+D

]

←





��̂gω ,
[

ĝαn , ĝβn , [ (ĝθn,` ĝ
θ̄n,`

1 )αn βn ]`=0,...,D

]

n=0,...,1+D



 .

� Query :

In the first probing phase, the adversary makes a number of extraction queries on adaptively
chosen identities distinct from Id∗ and all its prefixes. Suppose A makes such a query on Id =
[I0, . . . , IL] such that 1 ≤ L ≤ D. To prepare a response, B starts by determining the identity
component of lowest index, L′, such that IL′ 6= I∗L′ , letting L′ = L∗+1 in the event that Id∗ is a prefix
of Id. According to the rules of the game, it is always the case that 1 ≤ L′ ≤ D. The construction of
the private key is a two-step process. In the first step, B creates a “prototype” private key for Id ′ =
[I0, . . . , I

′
L]; this identity is either equal to or a prefix of Id, but of course not of Id∗. Define Θn ←

∑L′

`=0 θn,` I` and Θ̄n ←
∑L′

`=0 θ̄n,` I` for all n = 0, . . . , 1 + D, and note that (∀n), Θ̄n 6= 0 (mod p)
except with some probability ≤ (2+D)/p over the choice of [θ̄n,`], which is invisible to the adversary.
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To proceed, B picks a tuple of random integers [ρ̃n, [ρ̃n,m]m=0,...,1+D]n=0,...,1+D ∈$ (Zp)
(3+D) (2+D).

It also selects a set of supplemental integers [χn]n=0,...,1+D ∈$ (Zp)
2+D in a manner to be specified

later. The simulator creates the decryption portion of the prototype private key for Id ′ as,

[

k0,

[ kn,(a), kn,(b) ]n=0,...,1+D

]

←








ĝ
−

P1+D
n=0

χn Θn/Θ̄n

2

1+D∏

n=0

L′
∏

`=0

(ŷI`

n,`)
ρ̃n ,

[

ĝ
χn/βn Θ̄n

2 â−ρ̃n
n , ĝ

χn/αn Θ̄n

2 b̂−ρ̃n
n

]

n=0,...,1+D








,

and the re-randomization portion as, for all m = 0, . . . , 1 + D,

[

fm,0,

[ fm,n,(a), fm,n,(b) ]n=0,...,1+D

]

←

[
1+D∏

n=0

L′
∏

`=0

(ŷI`

n,`)
ρ̃n,m ,

[

â
−ρ̃n,m
n , b̂

−ρ̃n,m
n

]

n=0,...,1+D

]

,

and also the delegation portion as, for all ` = 1 + L′, . . . , D,

[

h`,

[ hm,` ]m=0,...,1+D

]

←

[

ĝ
−Θ0/Θ̄0

2 (ŷ0,`)
ρ̃0

1+D∏

n=1

(ŷn,`)
ρ̃n ,

[
1+D∏

n=0

(ŷn,`)
ρ̃n,m

]

m=0,...,1+D

]

.

Once it has calculated the prototype key, the simulator feeds it to the regular Derive algorithm,
and iteratively runs it using the sequence of identities [I0, . . . , Ik] for k = L′ + 1, . . . , L. The end
result is a private key for the requested identity; B gives it to A in response to the query.

According to Theorem 5, the simulator will issue a correctly distributed private key for Id

provided that it manages to construct a prototype key for Id′ that is itself correctly distributed. To
prove the latter, we consider the change of variables, ρn = ρ̃n−z2 χn/αn βn Θ̄n, for n = 0, . . . , 1+D.
The new variables ρn are uniformly i.i.d. in Zp, but their values are unknown to B (as it lacks z2).
It is easy to see that under this substitution all [kn,(a), kn,(b)] always assume the same form as

in the real scheme, kn,(a) = ĝ
χn/βn Θ̄n

2 â−ρ̃n
n = ĝ

χn/βn Θ̄n

2 (ĝαn)−z2 χn/αn βn Θ̄n â−ρn
n = â−ρn

n , and also,

kn,(b) = b̂−ρn
n . As for fm,0 and [fm,n,(a), fm,n,(b)], their expressions are unaffected by the change of

variables, and are already in the correct form by construction. The same applies to the hm,`. It
remains to show that k0 and the h` are well-formed, too. On the one hand, we have,

k0 = ĝ
−

P1+D
n=0

χn Θn/Θ̄n

2

1+D∏

n=0

L′
∏

`=0

(ŷI`

n,`)
ρ̃n

= ĝ
−

P1+D
n=0

χn Θn/Θ̄n

2

(
1+D∏

n=0

(

(ĝΘn ĝΘ̄n

1 )αn βn

)z2 χn/αn βn Θ̄n

) (
1+D∏

n=0

L′
∏

`=0

(ŷI`

n,`)
ρn

)

= (ĝz1 z2)
P1+D

n=0 χn

1+D∏

n=0

L′
∏

`=0

(ŷI`

n,`)
ρn .
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On the other hand, we have, for ` = 1 + L, . . . ,D,

h` = ĝ
−

P1+D
n=0 χn θn,`/Θ̄n

2

1+D∏

n=0

(ŷn,`)
ρ̃n

= ĝ
−

P1+D
n=0 χn θn,`/Θ̄n

2

(
1+D∏

n=0

(

(ĝθn,` ĝ
θ̄n,`

1 )αn βn

)z2 χn/αn βn Θ̄n

) (
1+D∏

n=0

(ŷn,`)
ρn

)

= (ĝz1 z2)
P1+D

n=0 χn θ̄n,`/Θ̄n

1+D∏

n=0

(ŷn,`)
ρn .

These values, k0 and the h`, will assume the correct form provided that,

1+D∑

n=0

χn = 1 , ∀` ∈ {1 + L′, . . . , D} :
1+D∑

n=0

χn θ̄n,`/Θ̄n = 0 ,

which constitutes a linear system of 1+D−L′ equations of 2+D unknowns. It is easy to argue that
this system admits a solution with overwhelming probability. The equations for ` ∈ {1 + L ′, . . . , D}
together form an under-determined homogeneous linear sub-system, whose solutions fill a vectorial
sub-space of dimension at least (2 + D) − (1 + D − L′) ≥ 2 in (Zp)

2+D, unless the sub-system is
defective, which happens with probability at most 1/p since all the coefficients θ̄n,`/Θ̄n are random.
The outstanding equation is then readily satisfied. It remains to argue that setting the [χ ·] in this
manner leaves unimpaired the proper randomization of the key. This is clearly the case since a
solution for [χ·] can be found prior to selecting any of the randomization exponents [ρ̃·].

� Challenge :

When the adversary is ready to accept a challenge on the previously chosen target identity Id∗, it
gives two message Msg0 and Msg1 to the simulator. The simulator selects a tuple of random integers
[rn]n=0,...,1+D ∈$ (Zp)

1+D, picks a random bit δ ∈$ {0, 1}, and outputs the challenge ciphertext,

CT∗ =

[

E, c0,

[ cn,(a), cn,(b) ]n=0,...,1+D

]

←





Msgδ · Z
−1, g3,

[

(grn)βn

PL∗

`=0 θn,` I∗
` , (g3 g−rn)αn

PL∗

`=0 θn,` I∗
`

]

n=0,...,1+D



 .

The challenge will have the same distribution as in a real attack whenever the Decision BDH tuple
originally given to B was legitimate, i.e., when Z = e(g1, ĝ2)

z3 . To see this, pose r = z3, note that
c0 = g3 = gz3 , and rewrite, for every n = 0, . . . , 1 + D,

cn,(a) = (grn)βn
PL∗

`=0 θn,` I∗
` =

(

g
PL∗

`=0 θn,` I∗
` g0

1

)βn rn

=

(
L∗
∏

`=0

(gθn,` g
θ̄n,`

1 )βn I∗
`

)rn

=

(
L∗
∏

`=0

(bn,`)
I∗
`

)rn

,

cn,(b) = (gr g−rn)αn

PL∗

`=0 θn,` I∗
` =

(
L∗
∏

`=0

(gθn,` g
θ̄n,`

1 )αn I∗
`

)(r−rn)

=

(
L∗
∏

`=0

(an,`)
I∗
`

)(r−rn)

,

thus exploiting the fact that
∑L∗

`=0 θ̄n,` I∗` (mod p) = 0 for the target identity. On the contrary,
whenever Z is a random element of GT , which happens when B was given a bogus Decision BDH
tuple, the challenge CT∗ is statistically independent of δ in the view of the adversary.
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� Query :

In the second probing phase, the adversary makes a number of additional private key queries
on adaptively chosen identities distinct from Id∗ and all its prefixes, exactly as in the first phase.
The simulator responds as before.

� Outcome :

Eventually, the adversary emits a guess δ̃ ∈ {0, 1} as to which message the challenge ciphertext
CT∗ is an encryption of. The simulator forwards 1 if δ̃ = δ and 0 otherwise as its own guess
regarding whether the input it initially received was a valid Decision BDH tuple.

This completes the simulation.
It is easy to see that the reduction works, since the simulation is perfect from beginning to end,

unless the given BDH tuple was invalid, in which case the plaintext is independent of the challenge,
as required. Since the reduction is time-efficient, and almost tight except for a tiny (3+D)/p total
probability of encountering an error condition upon each query, the theorem follows.

C.2 Anonymity

The HIBE anonymity proof is based on the same type of simulation as for semantic security, except
that now the reduction is from D-Linear instead of D-BDH. As in the IBE scheme of Section 4,
we use “linear splittings” to conceal the identity in the ciphertext. We build a simulator that uses
the given D-Linear tuple to perform such “splitting” for each identity component at a time. The
complete proof is thus a hybrid argument; it consists of a sequence of games, where at each step,
we show that the adversary cannot recognize a valid pair [cn,(a), cn,(b)] from a random pair [?, ?] in
the challenge ciphertext, for each n ∈ {0, . . . , 1 + D}.

Consider step 0 for the sake of illustration. The simulator must reduce the Decision Linear
problem to the dilemma [c0,(a), c0,(b)] vs. [?, ?] presented to the adversary. To do so, the simulator
will omit to choose secret exponents [α0, β0]; instead, it will use the D-Linear instance to simulate
the key extraction process without knowing the components [ŷ0,`]`=0,...,D in the master key.

We will face the same difficultly as in Section C.1 that responding to HIBE private key queries
requires the simulation of not one but many interconnected secret randomization exponents. This,
and the linear splitting, are all issues we have already encountered in earlier proofs. However, their
combined appearance in this proof causes interactions that seriously complicate matters. For this
reason, the formal proof of Theorem 7 will be fairly involved.

Combining Anonymity and Semantic Security. Since we have already established semantic
security, all we need to show is a reduction in the restricted anonymity game in which the challenge
ciphertext is a random message that is not given to the adversary.

We devise a hybrid experiment that consists of a sequence of games where the adversary is
given progressively garbled challenges. At one end, the challenge ciphertext is genuine, exactly as
in a real attack environment; at the other, it is random and thus independent of the identity. In
the entire experiment, the adversary is given truthful public parameters and access to a private
key oracle as in a real attack, so that the games in the sequence differ only in how the challenge
ciphertexts are formed.

Let each instance of the symbol ? denote an element sampled independently at random from
the appropriate group. The challenges are then specified as follows:
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CT∗
real = [E, c0, [c0,(a), c0,(b)], . . . , [c1+D,(a), c1+D,(b)]] — genuine ciphertext, as in a real attack;

CT∗
0 = [?, c0, [c0,(a), c0,(b)], . . . , [c1+D,(a), c1+D,(b)]] — ciphertext for a random message;

CT∗
1 = [?, c0, [?, ?], [c1,(a), c1,(b)], . . . , [c1+D,(a), c1+D,(b)]] — first “linear pair” is random;

· · ·

CT∗
n = [?, c0, [?, ?], . . . , [?, ?], [cn,(a), cn,(b)], . . . , [c1+D,(a), c1+D,(b)]] — increasingly many corruptions;

· · ·

CT∗
(1+D) = [?, c0, [?, ?], . . . , [?, ?], [c1+D,(a), c1+D,(b)]] — last remaining “linear pair”;

CT∗
(2+D) = [?, c0, [?, ?], . . . , [?, ?]] — all “linear pairs” replaced by random;

CT∗
random = [?, ?, [?, ?], . . . , [?, ?]] — completely random ciphertext, ipso facto anonymous.

For each transition from one game to the next, we need to show that the adversary cannot tell the
two games apart with non-negligible advantage. We already note the following:

• The last two games, CT∗
(2+D) and CT∗

random, are exactly the same since the only outstanding
component, c0 = gr, is random and independent of the entire attack and thus amounts to ?
(it is independent because there are no other components that depend on r).

• The very first transition, from CT∗
real to CT∗

0, corresponds exactly to the semantic security
indistinguishability result we proved in the previous section, so we already know that the
adversary cannot distinguish between them.

For these reasons, we only need to focus on the intermediate transitions. In all of them, the
element E of the ciphertext is set to ?, which means that the simulator may completely disregard
the challenge plaintext chosen by the adversary.

Proof of Theorem 7. It suffices to show that each of the middle 2 + D transitions (from CT∗
i to

CT∗
i+1 for i = 0, . . . , 1 + D) is indistinguishable by the adversary. We show each of them to be

indistinguishable under the Decision Linear assumption, in Lemmata 8 and 9. These results will
establish the theorem.

Lemma 8. In the setting of Theorem 7, no adversary can distinguish Game #0 from Game #1,

in time τ̃ ≈ τ , with advantage ε̃ ≈ ε, while making no more than q private key extraction queries.

Proof. We reduce the Decision Linear problem in G to the adversary’s task in the stated attack.
We build a reduction algorithm, B, that provides the adversary, A, with a simulated attack envi-
ronment. Algorithm B is given as input a Decision Linear problem instance consisting of a tuple
[g, gz1 , gz2 , gz1 z3 , gz2 z4 , ĝ, ĝz1 , ĝz2 , Z] ∈ G5 × Ĝ3 × G for random exponents [z1, z2, z3, z4] ∈ (Zp)

4,
where the test element Z ∈ G is either equal to gz3+z4 or is a random element gz5 for some z5 ∈ Zp.
For clarity, the problem instance supplied to B will be rewritten as,

[g, g1, g2, g31, g42, ĝ, ĝ1, ĝ2, Z] ∈ G5 × Ĝ3 ×G .

The simulation is described as follows.

� Open :

The adversary A opens the game by announcing the identity Id∗ = [I∗0 , I∗1 , . . . , I∗L∗ ] it wishes
to attack, where A is allowed to choose the number of hierarchical components, L∗ ∈ {1, . . . , D},
although we impose that I∗0 = 1 as usual.
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� Setup :

To create public parameters, the simulator B starts by drawing a tuple of random non-zero inte-
gers [ω, [αn, βn]n=1,...,1+D] ∈$ (Z×

p )3+2 D, and a vector of random integers [θ0,`]`=0,...,D ∈$ (Zp)
1+D.

For each n = 1, . . . , 1+D, it also selects a vector of pairs of integers [θn,`, θ̄n,`]`=0,...,D ∈$ (Zp)
2 (1+D),

subject to the constraint that
∑L∗

`=0 θ̄n,` I∗` = 0 (mod p), where it is noted that the elements with
indices greater than L∗ are left unconstrained. Next, the simulator assigns,

[

Ω, [ a0,`, b0,` ]`=0,...,D,

[ [ an,`, bn,` ]`=0,...,D ]n=1,...,1+D

]

←







e(g, ĝ)ω,
[

g
θ0,`

1 , g
θ0,`

2

]

`=0,...,D
,

[ [

(gθn,` g
θ̄n,`

1 )αn , (gθn,` g
θ̄n,`

1 )βn

]

`=0,...,D

]

n=1,...,1+D







.

The adversary is provided with the public parameters, Pub, which include the context G and the
elements Ω and [[an,`, bn,`]`=0,...,D]n=0,...,1+D ; their distribution is as in the real scheme.

To complete the setup, the simulator computes what it can of the private key. Note that the
public parameter simulation pegs the exponents α0 and β0 from the real scheme to the respective
unknowns z1 and z2 implicitly defined by the Decision Linear instance. B partially computes the
master key, Msk, as, (except for the crossed-out vector of ŷ0,·)

[

ŵ, [ â0, b̂0, ——————[ ŷ0,` ]`=0,...,D ],

[ ân, b̂n, [ ŷn,` ]`=0,...,D ]n=1,...,1+D

]

←





ĝω,
[

ĝ1, ĝ2, ————————[ ĝα0 β0 θ0,` ]`=0,...,D

]
,

[

ĝαn , ĝβn , [ (ĝθn,` ĝ
θ̄n,`

1 )αn βn ]`=0,...,D

]

n=1,...,1+D



 .

� Query :

In the first probing phase, the adversary makes a number of extraction queries on adaptively
chosen identities distinct from Id∗ and all its prefixes. Suppose that A makes such a query on Id =
[I0, . . . , IL] where I0 = 1. To prepare a response, B starts by determining the identity component
of lowest index, L′, such that IL′ 6= I∗L′ , letting L′ = L∗ + 1 in the event that Id∗ is a prefix of Id.
Under the stated rules of query, such an L′ ∈ {1, . . . , D} always exists and is uniquely defined in said
interval. The private key is constructed in two steps. In the first step, B creates a private key for the
identity Id′ = [I0, . . . , I

′
L]. Notice that Id′ is either equal to or a prefix of Id, but not of Id∗. Define

Θ0 ←
∑L′

`=0 θ0,` I`. For n = 1, . . . , 1+D, also define Θn ←
∑L′

`=0 θn,` I` and Θ̄n ←
∑L′

`=0 θ̄n,` I`, and
note that all Θ̄n 6= 0 (mod p) except with negligible probability ≤ (1+D)/p over the choice of [θ̄n,`].
To proceed, B picks a tuple of random integers [ρ̃0, [ρ̃0,m]m=0,...,1+D] ∈$ (Zp)

3+D, and, additionally,
picks a random tuple [ρ̃n, [ρ̃n,m]m=0,...,1+D] ∈$ (Zp)

3+D for every n = 1, . . . , 1 + D. Moreover,
B selects a supplemental collection of integers, [χn, [χn,m]m=0,...,1+D]n=1,...,1+D ∈ (Zp)

(3+D) (1+D),
subject to certain constraints to be discussed later. The simulator creates the decryption portion
of the prototype private key for Id′ as,

[

k0, [ k0,(a), k0,(b) ],

[ kn,(a), kn,(b) ]n=1,...,1+D

]

←









ŵ

1+D∏

n=1





(

ĝ
−Θn/Θ̄n

2

)Θ0 ρ̃0

(
L′
∏

`=0

ŷI`

n,`

)ρ̃n


,
[

â
−ρ̃0 (1+D)
0 , b̂

−ρ̃0 (1+D)
0

]

,

[

â−ρ̃n
n ĝ

χn ρ̃0 Θ0/Θ̄n βn

2 , b̂−ρ̃n
n ĝ

χn ρ̃0 Θ0/Θ̄n αn

2

]

n=1,...,1+D









,
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and the re-randomization portion as, for all m = 0, . . . , 1 + D,
[

fm,0, [ fm,0,(a), fm,0,(b) ],

[ fm,n,(a), fm,n,(b) ]n=1,...,1+D

]

←









1+D∏

n=1





(

ĝ
−Θn/Θ̄n

2

)Θ0 ρ̃0,m

(
L′
∏

`=0

ŷI`

n,`

)ρ̃n,m


,
[

â
−ρ̃0,m (1+D)
0 , b̂

−ρ̃0,m (1+D)
0

]

,

[

â
−ρ̃n,m
n ĝ

χn,m ρ̃0,m Θ0/Θ̄n βn

2 , b̂
−ρ̃n,m
n ĝ

χn,m ρ̃0,m Θ0/Θ̄n αn

2

]

n=1,...,1+D









,

and also the delegation portion as, for all ` = 1 + L′, . . . , D,
[

h`,

[ hm,` ]m=0,...,1+D

]

←

[
1+D∏

n=0

(ŷn,`)
ρn ,

[
1+D∏

n=0

(ŷn,`)
ρn,m

]

m=0,...,1+D

]

.

Once this is done, the second step for B is, starting with the prototype private key for Id ′ calculated
above, to apply the Derive algorithm iteratively to obtain private keys for the sequence of identities
Idk = [I0, . . . , Ik] as k is incremented from L′ +1 to L. The end result is a private key PvkId for the
requested identity Id = [I0, . . . , IL]. The simulator B gives this key to A in response to the query.

According to Theorem 5, the returned key for Id will be correctly distributed whenever the key
for Id′ is. To see that the prototype key is indeed distributed correctly, we make the following
change of variables, for all n = 1, . . . , 1 + D, and m = 0, . . . , 1 + D,

ρ0 = ρ̃0 (1 + D) ,

ρn = ρ̃n − χn
z2 ρ̃0 Θ0

Θ̄n αn βn
,

ρ0,m = ρ̃0,m (1 + D) ,

ρn,m = ρ̃n,m − χn,m
z2 ρ̃0,m Θ0

Θ̄n αn βn
,

which lets us rewrite the various components in their usual form. In extenso,

k0 = ŵ

1+D∏

n=1





(

ĝ−Θn Θ̄−1
n

2

)Θ0 ρ̃0

(
L′
∏

`=0

ŷI`

n,`

)ρ̃n




= ŵ
1+D∏

n=1






(

ĝ−Θn Θ̄−1
n

2

)Θ0 ρ̃0

(
L′
∏

`=0

(ĝθn,` ĝ
θ̄n,`

1 )I`

)χn z2 ρ̃0 Θ0 Θ̄−1
n (

L′
∏

`=0

ŷI`

n,`

)ρn






= ŵ

1+D∏

n=1





(

ĝ−Θn Θ̄−1
n

2

)Θ0 ρ̃0
(

ĝΘn

2

)χn ρ̃0 Θ0 Θ̄−1
n
(

ĝz1 z2 Θ̄n

)χn ρ̃0 Θ0 Θ̄−1
n

(
L′
∏

`=0

ŷI`

n,`

)ρn




= ŵ
(

ĝ−ρ̃0 Θ0

2

)P1+D
n=1 (χn−1) Θn Θ̄−1

n
1+D∏

n=1



(ĝz1 z2)χn ρ̃0

PL′

`=0 θ0,` I`

(
L′
∏

`=0

ŷI`

n,`

)ρn




= ŵ
(

ĝ−ρ̃0 Θ0

2

)P1+D
n=1 (χn−1) Θn Θ̄−1

n
1+D∏

n=1





(
L′
∏

`=0

(ĝα0 β0 θ0,`)I`

)χn ρ̃0 ( L′
∏

`=0

ŷI`

n,`

)ρn




= ŵ
(

ĝ−ρ̃0 Θ0

2

)P1+D
n=1 (χn−1) Θn Θ̄−1

n

(
L′
∏

`=0

ŷI` ρ0

0,`

)
P1+D

n=1 χn/(1+D)
1+D∏

n=1

L′
∏

`=0

ŷI` ρn

n,` = ŵ
1+D∏

n=0

L′
∏

`=0

ŷI` ρn

n,` ,
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where the last equation is predicated on the two following conditions,

1+D∑

n=1

(χn − 1) = 0 ,

1+D∑

n=1

(χn − 1)Θn Θ̄−1
n = 0 ; (1a,1b)

and as required, we find that k0,(a) = â−ρ0

0 and k0,(b) = b̂−ρ0

0 ; and also, for n = 1, . . . , 1 + D,

kn,(a) = â−ρ̃n
n ĝ

χn ρ̃0 Θ0/Θ̄n βn

2 = â−ρn
n ĝ

−αn χn z2 ρ̃0 Θ0/Θ̄n αn βn ĝ
χn ρ̃0 Θ0/Θ̄n βn

2 = â−ρn
n ,

kn,(b) = b̂−ρ̃n
n ĝ

χn ρ̃0 Θ0/Θ̄n αn

2 = b̂−ρn
n ĝ

−βn χn z2 ρ̃0 Θ0/Θ̄n αn βn ĝ
χn ρ̃0 Θ0/Θ̄n αn

2 = b̂−ρn
n .

Using analogous calculations, we can derive a similar set of relations, such as, for m = 0, . . . , 1+D,

fm,0 =
1+D∏

n=1





(

ĝ−Θn Θ̄−1
n

2

)Θ0 ρ̃0,m

(
L′
∏

`=0

ŷI`

n,`

)ρ̃n,m




=
(

ĝ
−ρ̃0,m Θ0

2

)P1+D
n=1 (χn,m−1) Θn Θ̄−1

n

(
L′
∏

`=0

ŷ
I` ρ0,m

0,`

)
P1+D

n=1 χn,m/(1+D)
1+D∏

n=1

L′
∏

`=0

ŷ
I` ρn,m

n,`

=
1+D∏

n=0

L′
∏

`=0

ŷ
I` ρn,m

n,` ,

where for the last equality to hold we impose that, for all m = 0, . . . , 1 + D,

1+D∑

n=1

(χn,m − 1) = 0 ,

1+D∑

n=1

(χn,m − 1)Θn Θ̄−1
n = 0 ; (2a,2b)

in addition, we have the required fm,0,(a) = â
−ρ0,m

0 and fm,0,(b) = b̂
−ρ0,m

0 ; and furthermore, for all
n = 1, . . . , 1 + D,

fm,n,(a) = â
−ρ̃n,m
n ĝ

χn,m ρ̃0,m Θ0/Θ̄n βn

2 = â
−ρn,m
n ĝ

−αn χn,m z2 ρ̃0,m Θ0/Θ̄n αn βn ĝ
χn,m ρ̃0,m Θ0/Θ̄n βn

2 = â
−ρn,m
n ,

fm,n,(b) = b̂
−ρ̃n,m
n ĝ

χn,m ρ̃0,m Θ0/Θ̄n αn

2 = b̂
−ρn,m
n ĝ

−βn χn z2 ρ̃0,m Θ0/Θ̄n αn βn ĝ
χn,m ρ̃0,m Θ0/Θ̄n αn

2 = b̂
−ρn,m
n .

As for the remaining components of the key, if, for each ` = 1+L′, . . . , D, and each m = 0, . . . , 1+D,

1+D∑

n=1

χn
θ̄n,`

Θ̄n

1

αn βn
= (1 + D)

θ0,`

Θ0
,

1+D∑

n=1

χn,m
θ̄n,`

Θ̄n

1

αn βn
= (1 + D)

θ0,`

Θ0
, (3,4)
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then, we can equate, for every ` = 1 + L′, . . . , D,

h` = (ĝz1 z2 ρ̃0)

0
︷ ︸︸ ︷
(

(1 + D) θ0,` −
1+D∑

n=1

χn
θ̄n,`

αn βn
(Θ0/Θ̄n)

)

(
1+D∏

n=1

ĝ
−χn θn,`

ρ̃0 Θ0
Θ̄n αn βn

2

) (
1+D∏

n=1

ŷρ̃n

n,`

)

= (ĝz1 z2 θ0,` ρ̃0 (1+D))

(
1+D∏

n=1

ĝ
−z1 z2 χn θ̄n,`

ρ̃0 Θ0
Θ̄n αn βn

) (
1+D∏

n=1

ĝ
−χn θn,`

ρ̃0 Θ0
Θ̄n αn βn

2

) (
1+D∏

n=1

ŷρ̃n

n,`

)

= (ĝz1 z2 θ0,` ρ0)

(
1+D∏

n=1

(ĝ
θ̄n,`

1 )
−χn

z2 ρ̃0 Θ0
Θ̄n αn βn

) (
1+D∏

n=1

(ĝ
θn,`

2 )
−χn

ρ̃0 Θ0
Θ̄n αn βn

) (
1+D∏

n=1

ŷρ̃n

n,`

)

= (ĝα0 β0 θ0,`)ρ0

(
1+D∏

n=1

(gθn,` ĝ
θ̄n,`

1 )
−χn

z2 ρ̃0 Θ0
Θ̄n αn βn

) (
1+D∏

n=1

ŷρ̃n

n,`

)

= (ŷ0,`)
ρ0

(
1+D∏

n=1

(ŷn,`)
−χn

z2 ρ̃0 Θ0
Θ̄n αn βn

) (
1+D∏

n=1

ŷρ̃n

n,`

)

= (ŷ0,`)
ρ0

1+D∏

n=1

(ŷn,`)
ρn =

1+D∏

n=0

(ŷn,`)
ρn ,

and also, in the same way as above, for ` = 1 + L′, . . . , D, and m = 0, . . . , 1 + D,

hm,` =

(
1+D∏

n=1

ĝ
−χn,m θn,`

ρ̃0,m Θ0

Θ̄n αn βn

2

) (
1+D∏

n=1

ŷ
ρ̃n,m

n,`

)

=

1+D∏

n=0

(ŷn,`)
ρn,m .

To conclude this part of the argument, it suffices to show that the simulator can always choose
a set of values for [χn, [χn,m]m=0,...,1+D]n=1,...,1+D ∈$ (Zp)

(3+D) (1+D) to satisfy all the constraints
shown in (1–4), without jeopardizing the proper randomization of the prototype private key. As
regards the latter point, observe that the constraints (1–4) are independent of the randomization
exponents [ρ̃·], which means that the simulation can be freely randomized once the values for the
[χ·] have been determined.

To see that a solution for [χn]n=1,...,1+D always exists except with negligible probability, we first
observe that these variables constitute a set of 1 + D unknowns in a linear system of 2 + D − L ′

equations given by (1a,1b,3). Since 2+D−L′ ≤ 1+D, the system is never over-contrained. Next, we
note that (1a) and (1b) together admit at least a solution in (Zp)

1+D (e.g., χ1 = . . . = χ(1+D) = 1);
these two equations therefore define an admissible affine sub-space A1 of dimension D − 1 in
(Zp)

1+D. Then, remark that in (3), every unknown χn has an independent random coefficient in
Zp in every equation, so that (3) is a linear sub-system Aχ = b where the matrix A is random in

(Zp)
(D−L′)×(1+D); thus, unless A is deficient, the sub-system defines a random affine sub-space A2

of dimension (1 + D) − (D − L′) in (Zp)
1+D. Observe that P(A1 ∩ A2 = ∅) ≤ 1/p. It follows that

the entire system will be insoluble with negligible probability ≤ 2/p.
The same can be said to show that a solution for [[χn,m]m=0,...,1+D]n=1,...,1+D almost always

exists, based on the fact that for each m = 0, . . . , 1+D, the constraints (2a,2b,4) form an indepen-
dent linear system of 2 + D − L′ equations of 1 + D unknowns exactly as above. Overall, we infer
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that the total probability that any of these 3 + D systems fails to admit a solution is ≤ (3+D) 2/p.
Thus, taking into account the earlier failure probability ≤ (1+D)/p, the simulator will be in good
shape with probability ≥ 1− (7+3 D)/p upon answering this particular query.

� Challenge :

When the adversary is ready to be challenged on the previously chosen target identity Id∗, the
simulator selects a tuple of random integers [[rn]n=1,...,1+D] ∈$ (Zp)

1+D and gives to the adversary
the following challenge (where ? is a random element of GT , i.e., to encrypt a random message),

CT∗ =

[

E, c0, [ c0,(a), c0,(b) ],

[ cn,(a), cn,(b) ]n=1,...,1+D

]

←






?, T,
[

(g42)
PL∗

`=0 θ0,` I∗
` , (g31)

PL∗

`=0 θ0,` I∗
`

]

,
[

(grn)βn
PL∗

`=0 θn,` I∗
` , (T g−rn)αn

PL∗

`=0 θn,` I∗
`

]

n=1,...,1+D




 .

The challenge is well formed whenever Z = gz3+z4 . This can be seen by posing r = z3 + z4 and
r0 = z4, under which substitutions the ciphertext can be rewritten as in the scheme. In particular,

c0,(a) = g
r0

PL∗

`=0 θ0,` I∗
`

2 =

(
L∗
∏

`=0

(b0,`)
I∗
`

)r0

,

c0,(b) = g
(r−r0)

PL∗

`=0 θ0,` I∗
`

1 =

(
L∗
∏

`=0

(a0,`)
I∗
`

)r−r0

,

and furthermore, for every n = 1, . . . , 1 + D, since 0 =
∑L∗

`=0 θ̄n,` I∗` (mod p),

cn,(a) = gβn rn

PL∗

`=0 θn,` I∗
` =

(

g
PL∗

`=0 θn,` I∗
` g0

1

)βn rn

=

(
L∗
∏

`=0

(gθn,` g
θ̄n,`

1 )βn I∗
`

)rn

=

(
L∗
∏

`=0

(bn,`)
I∗
`

)rn

,

cn,(b) = gαn (r−rn)
PL∗

`=0 θn,` I∗
` =

(
L∗
∏

`=0

(gθn,` g
θ̄n,`

1 )αn I∗
`

)(r−rn)

=

(
L∗
∏

`=0

(an,`)
I∗
`

)(r−rn)

.

On the contrary, when Z = gz5 with z5 ∈ Zp random and independent, c0 and all the pairs
[cn,(a), cn,(b)] for n 6= 0 remain correctly jointly distributed, as can be shown by posing r = z5

and arguing exactly as above; however, the two components [c0,(a), c0,(b)] are now statistically
independent of Id∗ in the view of the adversary. To see why, observe that a computationally
unbounded adversary can uniquely determine r and all the rn for n 6= 0 from the “good” part of
the ciphertext, however there will be no r0 that agrees with r, Id∗, and [c0,(a), c0,(b)]. Indeed, since
g31 = gz3

1 and g42 = gz4

2 where [z3, z4] are independent of the rest of the simulation, it follows that
the pair [c0,(a), c0,(b)] remains uniformly distributed in (G)2 given Id∗ and the rest of the ciphertext.

� Query :

In the second probing phase, the adversary makes a number of additional extraction queries
on adaptively chosen identities distinct from Id∗ and all its prefixes, as in the first phase. The
simulator responds in the same manner.

� Outcome :

Eventually, the adversary emits a guess as to whether or not the challenge ciphertext CT∗ was
addressed to Id∗. The simulator forwards the adversary’s output to its own challenger as its own
guess as to whether the input it initially received was a valid Decision Linear tuple.
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This concludes the description of the simulator.
The reduction is valid since the simulation is perfect from beginning to end, unless the given

instance of the Decision Linear problem was an invalid tuple, in which case the first “linear pair”
in the challenge ciphertext will be random. Specifically, the adversary is given a challenge that can
be either,

[c0, [c0,(a), c0,(b)], [c1,(a), c1,(b)], . . . , [c1+D,(a), c1+D,(b)]] ,

or,
[c0, [?, ?], [c1,(a), c1,(b)], . . . , [c1+D,(a), c1+D,(b)]] ,

as required. The reduction is clearly time-efficient, and is tight except for a negligigle failure
probability ≤ (7+3 D) q/p for an attack that comprises q queries. Hence, the lemma follows.

Lemma 9. In the setting of Theorem 7, for each n = 1, . . . , 1 + D, no adversary can distinguish

Game #n from Game #n + 1, in time τ̃ ≈ τ , with advantage ε̃ ≈ ε, while making no more than q
private key extraction queries.

Proof. We can prove this lemma for each required transition almost exactly as the previous one, by
exchanging the roles played by [a0,`, b0,`, ŷ0,`] with those played by [an,`, bn,`, ŷn,`] in the simulation,
and taking care of the ramifications, etc. Specifically, α0 and β0 will now be chosen by the simulator,
whereas the given instance of the Decision Linear problem will implicitly define αn = z1 and βn = z2.

The other difference with the previous proof concerns the construction of the challenge CT∗.
As expected, [cn,(a), cn,(b)] will be constructed using a technique analogous to the construction of
[c0,(a), c0,(b)] in the previous proof, i.e., based on g42 and g31 from the Decision Linear problem
instance. However, we need no longer construct any of the pairs [cn′,(a), cn′,(b)] for n′ < n, since the
dilemma to be faced by the adversary is to distinguish between

[c0, [?, ?], . . . , [?, ?], [cn,(a), cn,(b)], [cn+1,(a), cn+1,(b)], . . . , [c1+D,(a), c1+D,(b)]] ,

and
[c0, [?, ?], . . . , [?, ?], [?, ?], [cn+1,(a), cn+1,(b)], . . . , [c1+D,(a), c1+D,(b)]] .

We can simply set all the pairs that are random in both cases to randomly selected elements
[cn′,(a), cn′,(b)] ∈$ (G)2, for n′ < n. The rest of the proof is analogous to that of Lemma 8.
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